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Upper bound on the heat transport in a layer of fluid of infinite Prandtl number,
rigid lower boundary, and stress-free upper boundary

Nikolay K. Vitanov
Max-Planck-Institut fu¨r Physik Komplexer Systeme, No¨thnitzer Strasse 38, 01187 Dresden, Germany

~Received 29 July 1999!

We obtain an upper bound on the convective heat transport in a heated from below horizontal fluid layer of
infinite Prandtl number with rigid lower boundary and stress-free upper boundary. Because of the asymmetric
boundary conditions the solutions of the Euler-Lagrange equations of the corresponding variational problem
are also asymmetric with different thicknesses of the boundary layers on the upper and lower boundary of the
fluid. The obtained bound on the convective heat transport and the corresponding wave number are between the
values for a fluid layer with two rigid boundaries and a fluid layer with two stress-free boundaries.

PACS number~s!: 47.27.Te, 47.27.Cn
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The methods of the optimum theory of turbulence allo
us to obtain rigorous results for the turbulent transport qu
tities in fluid systems directly on the basis of the govern
Navier-Stokes equations. Following earlier ideas of Malk
@1,2#, Howard@3# formulated the theory of the upper boun
for the convective heat transport in a horizontal fluid lay
heated from below. Busse@4# contributed to the optimum
theory of turbulence by the introduction of the multiwa
number solutions of the arising variational problems. In
following years the Howard-Busse method was applied
obtaining bounds on turbulent quantities in different case
flows and thermal convection@5–7#. In 1992 Doering and
Constantin@8# have proposed another method for derivi
bounds on turbulent quantities. This method is based on
background flow idea. Its strong side is that if the bac
ground field satisfies certain spectral constraint one obt
immediately an upper bound on the investigated turbu
quantity @9–11#. Up to now the results obtained by th
Howard-Busse method persist the attempts for further
provement. There exist indications that the variational pr
lems of Howard and Busse and Doering and Constantin m
be equivalent. Progress in this area of investigation for
case of shear flow has been made recently by Kerswell@12#.

In this paper we apply the Howard-Busse method a
obtain an upper bound on the heat transport in a horizont
infinite layer of fluid with rigid lower boundary and stres
free upper boundary. The cases of a fluid layer with two ri
boundaries and two stress-free boundaries are discuss
Refs. @13# and @14#. For these cases the optimum fields a
symmetric with respect to the midplane of the fluid layer. F
the case, discussed below, the boundary conditions are a
metric. This leads to asymmetric layer structure of the o
mum fields as well as to different values for the upper bou
on the convective heat transport, wave number, and
thicknesses of the boundary layers of the optimum fields

Consider a horizontally infinite fluid layer heated fro
below of thicknessd with fixed temperaturesT1 and T2 at
the upper and lower boundaries. Let us denote the coeffic
of thermal expansion byg, the kinematic viscosity byn, and
the acceleration of gravity byg. Denoting the thermal diffu-
sivity of the fluid ask and usingd as length scale,d2/k as
time scale, and (T22T1)/R as temperature scale we ca
PRE 611063-651X/2000/61~1!/956~4!/$15.00
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write the Navier-Stokes equations for the velocity vectoru
and the heat equation for the deviationQ from the static
temperature distribution in dimensionless form

~1/P!~]u/]t1u•“u!52¹p1kQ1¹2u, ~1!

¹•u50, ~2!

]Q/]t1u•¹Q5Rk•u1¹2Q, ~3!

where we have introduced a Cartesian system of coordin
with z axis in the vertical direction. R5g(T2
2T1)gd3/(kn) is the Rayleigh number,P5n/k is the
Prandtl number, andk is the vertical unit vector. Denoting
the z component ofu as w we write for the rigid boundary
conditions on the bottom of the layerw5]w/]z5Q50 at
z521/2 and for the stress-free boundary conditions on
top of the layerw5]2w/]z25Q50 at z51/2.

We introduce the averages of a qualityq over the the
planesz5const~denoted asq̄) and over the fluid layer~de-
noted aŝ q&) ~for definitions see Ref.@3#!. The temperature
field is separated into two partsQ5Q̄1T such thatT̄50
holds. A subtraction of the horizontal average of Eq.~3!
from Eq. ~3! leads us to the result

]T

]t
1u•¹T1w

]Q̄

]z
2

]

]z
wT̄5Rw1¹2T. ~4!

Multiplying Eq. ~1! by u and Eq.~4! by T and averaging
the result over the fluid layer we obtain the relationships

~1/2P!d^u•u&/dt5^wT&2^u¹uu2&, ~5!

~1/2!d^T2&/dt5R^wT&2^u¹Tu2&2^wT̄]Q̄/]z&. ~6!

We are interested in turbulent convection long after any
ternal parameter has been changed. We define this situa
by the condition that all horizontally averaged quantities
time independent. In this case we obtain from the first in
gral of the horizontal averaged~3!: dQ̄/dz5wT̄2^wT&. Us-
ing this we obtain the final form of the relationships~5!,~6!
~known also as power integrals!
956 ©2000 The American Physical Society
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^wT&5^u¹uu2&, ~7!

^u¹Tu2&5R^wT&1^wT&22^wT̄2&. ~8!

Equations~7!,~8! hold for all Prandtl numbersP. The impo-
sition of the infinite Prandtl number condition allows a fu
ther restriction of the fields that satisfy the power integra
Equation~1! becomes linear in the limitP→` and we shall
incorporate it as an additional constraint into the variatio
problem. The pressure is eliminated by taking t
z-component of the double curl of Eq.~1!. Thus we obtain
¹1

2T1¹4w50.
We take also the equation of continuity as a constra

into the variational problem by means of the general rep
sentation of a solenoidal vector fieldu in terms of a poloidal
and a toroidal componentu5¹3(¹3kf)1¹3kc where
the conditionf̄5c̄50 can be imposed without changingu.
Taking the curl of Eq.~1! we see thatc must vanish in the
limit of infinite Prandtl number. Thez component ofu of
interest to us is given by the poloidal fieldf, w52¹1

2f
where¹15]2/]x21]2/]y2.

We write a functional for the convective heat transp
Nu215^wT&/R whereNu is the Nusselt number. Using th
power integrals~7! and ~8! and imposing the normalizatio
condition ^wu&51 we obtain the variational problem in th
following form.

Given Rayleigh numberR find the maximumF(R) of the
variational functional

F~R,w,u!5@12~1/R!^u¹uu2&#/^~12wū !2& ~9!

among all fieldsw and u subject to the constraintŝwu&
51 and ¹4w1¹1

2u50 and the boundary conditionsw
5]w/]z5u50 at z521/2 and w5]2w/]z25u50 at z
51/2. The Euler-Lagrange equations for the functional~9!
are

1

RF
¹6u1¹4F S 12wū2

2l

F DwG1~12wū !¹4w50,

~10!

¹4w1¹1
2u50, ~11!

wherel is 21<l52(1/2)@22(1/R)^uuu2&#<21/2.
We assume that five sublayers of the fluid layer exist.

high Rayleigh numbers almost the whole layer volume
occupied by an internal layer in which the optimum fieldsw

andu are almost constants andwū is also constant approxi
mately equal to 1. On the borders of this internal layer
have two intermediate layers in whichwū is again almost
constant and equal to 1 butw andu change substantially. A
boundary layer develops between each of the intermed
layers and the boundary of the fluid layer. In this layer t
fieldsw andu satisfy the boundary conditions and match t
correspondent values on the border between the boun
and the intermediate layer.

For each sublayer we introduce the correspondent coo
nates. For the internal layer the coordinate remainsz. For the
two intermediate sublayers we introduce the coordinatej l
5a(z11/2) for the lower intermediate layer andju
.
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5a(1/22z) for the upper intermediate layer. For the boun
ary layers we introduce the coordinatesh l5(a/d l)(z11/2)
for the lower boundary layer~near the rigid boundary! and
hu5(a/du)(1/22z) for the upper boundary layer~near the
stress-free boundary!. du andd l are connected to the thick
ness of the correspondent boundary layer and have the p
erty du,l→0 whenR→`.

In the internal layer the assumption iswū'1 and w1
'const,u1'const which lead to vanishing of the terms co
taining derivatives. Thus we obtain the solutionw1

5w̃1/a;u15 ũ1a; w̃15 ũ151. For the intermediate layer
we write w1 and u1 as w15w̌1(ju)/a; u15aǔ1(ju); w1

5w̌1(j l)/a; u15aǔ1(j l). Introducing the operatorL̂ l ,u

5(d2/dj l ,u
2 21) we obtain the resulting Euler-Lagrang

equations for the upper and lower intermediate layers

a4

RF
L̂l ,u

3 ǔ11L̂ l ,u
2 @~12w̌1ǔ1!w̌1#1~12w̌1ǔ1!L̂ l ,u

2 w̌150,

~12!

L̂ l ,u
2 w̌15 ǔ1 . ~13!

The solution of Eq.~12! is approximatelyw̌1ǔ151. The
approximate solution of Eq.~13! when j l→0 is w̌1

5j l
2Aln (1/j l). When ju→0 the correspondent solution i

w̌15cju2@ju
3/(6c)# ln(1/ju) with c50.834210.

We shall match the above solutions to the solutions
the boundary layers. For the upper and for the lower bou
ary layers we perform the scalingw15Auŵ1(hu); u1

5(1/Au) û1(hu); w15Alŵ1(h l); u15(1/Al) û1(h l). Under
the assumption that in the boundary layers the terms cont
ing the higher derivatives are much larger than the ot
terms we obtain for the Euler-Lagrange equations in
boundary layers

~a2Au,l
2 /du,l

4 !~d4ŵ1 /dhu,l
4 !5 û1 , ~14!

a2

Au,l
2 RFdu,l

2

d6û1

dhu,l
6

1
d4

dhu,l
4 @~12ŵ1û1!ŵ1#

1~12ŵ1û1!
d4ŵ1

dhu,l
4

50. ~15!

The boundary conditions for the upper boundary layer
ŵ1(0)5ŵ19(0)5 û1(0)50 and the boundary conditions fo

the lower boundary layer areŵ1(0)5ŵ18(0)5 û1(0)50.
The solution for the upper intermediate layer must ma

the solution for the upper boundary layer. Using thatju
5duhu and assumingAu5cdu /a we obtain the approximate
solution for the upper boundary layerŵ1'hu1•••. Analo-
gous the solution for the lower intermediate layer mu
match the solution in the lower boundary layer. Using th
j l5d lh l and assumingAl5(1/a)d l

2@ ln(1/d l)#1/2 we obtain

the approximate solution for the lower boundary layerŵ1

'h l
21•••

For F, a, du , d l we have the equations
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a45c2du
4RF, a45RFd l

6ln~1/d l !, ~16!

]F/]a50, ~17!

F5@2a~12a4/R!#/@duDu1d lDl #, ~18!

where

Du52E
0

`

dhuF S dû1
(1)

dhu
D 2

1~12huû1
(1)!2G52.11975,

~19!

Dl52E
0

`

dh lF S dû1
(1)

dh l
D 2

1~12h l
2û1

(1)!2G52.2212.

~20!

An application of Eq.~17! to Eq. ~18! leads us to the
relationship

du5d l~Dl /Du!@R213a4#/@12a4#. ~21!

The solution ford l is

d l5A* ~R!21S 13Dl
4

244 D 1/20S 1

20D
21/5

R21/20~ lnR!21/5,

~22!

where A15244c1/2/(12DuDl
3); A25(13Dl

4/244)239/40

(1/20)3/20R21/40(lnR)3/20; and A* (R)'@A1 /(A11A2)#1/20.
The result fora is

a5@A* ~R!#5~R/13!1/4 ~23!

and the result forF is

F5S 24

Dl
D 6/5

@A* ~R!#2613213/102021/5R3/10~ lnR!1/5. ~24!

Figures 1–3 show the dependenciesF(R), a(R), du(R),
d l(R) in comparison to the correspondent functions obtain

FIG. 1. Wave numbera as function of the Rayleigh numbe
Solid line: case of fluid layer with two rigid boundaries. Dash
line: case of fluid layer with two stress-free boundaries. Dot-das
line: case of fluid layer with rigid lower boundary and stress-fr
upper boundary.
d

for the cases of fluid layer with two stress-free or two rig
boundaries. As it can be expected the upper bound on
convective heat transport for the case discussed here lies
tween the bounds on the convective heat transport for
cases of layer with two rigid boundaries and of layer w
two stress-free boundaries. The wave numbera is close to
the wave number for the case of two rigid boundaries. T
contribution of the upper boundary and intermediate layer
expressed by the termA* (R). The asymmetry of the opti-
mum fields leads to different dependencies of the thickn
of the upper and lower boundary layer on the Rayleigh nu
ber. Instead of one equation for the boundary layer thickn
d for the case of a fluid layer with two rigid or two stres
free boundaries, here we have two equations for the bou
ary layer thicknessesdu ,d l .

d

FIG. 2. Boundary-layer thicknesses of the optimum fields
function of the Rayleigh number. Solid line: case of the fluid lay
with two rigid boundaries. Dashed line: case of fluid layer with tw
stress-free boundaries. Dot-dashed line: upper boundary laye
the case of a fluid layer with rigid lower boundary and stress-f
upper boundary. Short-dashed line: lower boundary layer for
case of fluid layer with rigid lower and stress-free upper bounda

FIG. 3. Upper bound on the convective heat transport as fu
tion of the Rayleigh number. Solid line: case of fluid layer with tw
rigid boundaries. Dashed line: case of fluid layer with two stre
free boundaries. Dot-dashed line: case of fluid layer with rig
lower boundary and stress-free upper boundary.
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We note that the theory of the 12a solution of the varia-
tional problem contains as a particular case the problem
the onset of the convection. Analogous to Ref.@15# the func-
tional, obtained by the power integrals~7!, ~8! can be re-
duced to the variational functional that determines the on
of the convection~for details see Ref.@16#! and thus we
obtain for the critical values of the wave-number and R
leigh number:ac52.682,Rc51100.65.

The asymptotic theory of the 12a solution of the varia-
tional problem outlines the routes which must be follow
when a theory of the multi-a solutions is developed. Th
boundary layers are important part of the theory of the mu
wave-numbers solutions. The increasing of the number of
boundary layers which must be taken into account lead
complications in the multi-a case. The equations we sha
have to solve will be more complicated than these for
case of a fluid layer with two rigid boundaries@13#. The
investigation reported here indicates that despite the com
cations because of the asymmetry of the optimum fields
could obtain asymptotic analytical upper bounds on the c
vective heat transport based on the multi-a solutions of the
or
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variational problem. It is well known that the 12a solution
of the variational problem leads to rigorous upper bound
the convective heat transport up to certain value of the R
leigh number. If the Rayleigh number increases further
rigorous upper bound is obtained on the basis of the 22a
solution, then by the 32a solution, etc. As the upper boun
obtained by the 12a solution for the case, discussed here,
between the bounds for the cases of fluid layer with two ri
and two stress-free boundaries, we can expect, that the b
obtained by theN2a solution of the variational problem
(N→`) will be }R1/3. Indications for such a result can als
be seen from the inequality obtained in Ref.@17#. The theory
of the multi-a solutions of the variational problem whic
will answer the questions about the regions of the validity
the bounds obtained by each of the multi-a solutions of the
variational problem, about the value of the bound obtain
when the number of the wave numbers tends to infinity, a
about the relations among the thicknesses of the upper
lower boundary layers of the optimum fields, will be a su
ject of future research.
y
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