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Upper bound on the heat transport in a layer of fluid of infinite Prandtl number,
rigid lower boundary, and stress-free upper boundary

Nikolay K. Vitanov
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We obtain an upper bound on the convective heat transport in a heated from below horizontal fluid layer of
infinite Prandtl number with rigid lower boundary and stress-free upper boundary. Because of the asymmetric
boundary conditions the solutions of the Euler-Lagrange equations of the corresponding variational problem
are also asymmetric with different thicknesses of the boundary layers on the upper and lower boundary of the
fluid. The obtained bound on the convective heat transport and the corresponding wave number are between the
values for a fluid layer with two rigid boundaries and a fluid layer with two stress-free boundaries.

PACS numbegs): 47.27.Te, 47.27.Cn

The methods of the optimum theory of turbulence allowwrite the Navier-Stokes equations for the velocity veaior
us to obtain rigorous results for the turbulent transport quanand the heat equation for the deviatiéh from the static
tities in fluid systems directly on the basis of the governingtemperature distribution in dimensionless form
Navier-Stokes equations. Following earlier ideas of Malkus

[1,2], Howard[3] formulated the theory of the upper bounds (1/P)(duldt+u-Vu)=—Vp+kO+V2y, (1)
for the convective heat transport in a horizontal fluid layer,
heated from below. Bussgl] contributed to the optimum V-u=0, (2

theory of turbulence by the introduction of the multiwave
number solutions of the arising variational problems. In the
following years the Howard-Busse method was applied for . . .
obtaining bounds on turbulent quantities in different cases Owir':ﬁ re ;ve 2;\;6 |ri1rt1rodtL;](:eed Se(r:t?cr;?gaorllir?gitg? ;f:co?_:_dmates
flows and thermal convectiofb—7]. In 1992 Doering and ' N2

: - —T,)gd%(«xv) is the Rayleigh numberP=v/k is the
Constantin(8] have proposed another method for deriving Prail)dgtl nu(r,;b)er and is th)é vgrtical unit vector’.< Denoting

bounds on turbulent quantities. This method is based on thﬁ’]e 2 component ofu asw we write for the rigid boundary
background flow idea. Its strong side is that if the back-Conditions on the bottom of the layer=ow/dz=0=0 at

ground field satisfies certain spectral constraint one obtaingz —1/2 and for the stress-free boundary conditions on the
immediately an upper bound on the investigated turbulen{Op of the layew= 3w/ 9z2=0=0 atz=1/2.

quantity [9-11]. Up to now the results obtained by the \ye introduce the averages of a qualilyover the the

Howard-Busse method persist the attempts for further 'mblanesz:const(denoted a&'T) and over the fluid layefde-

provement. There exist indications th'at the varlatlonal.probhoted agq)) (for definitions see Ref3]). The temperature
lems of Howard and Busse and Doering and Constantin ma d i di 8=0+T such thaiT=0
be equivalent. Progress in this area of investigation for th%'/eId |s:epatr)?te t.mto P’\;ﬁ pr;r . t+I such t atf -

case of shear flow has been made recently by Kergd2]l olds. A subtraction of the horizontal average of E8)

In this paper we apply the Howard-Busse method and‘rom Eq. (3) leads us to the result

d0/dt+u-VO=RKk-u+V?0, 3

obtain an upper bound on the heat transport in a horizontally —
infinite layer of fluid with rigid lower bqundary a_nd stres.s? £+U~VT+W@— iﬁRWJFVzT. (4)
free upper boundary. The cases of a fluid layer with two rigid at Jz z

boundaries and two stress-free boundaries are discussed in

Refs.[13] and[14]. For these cases the optimum fields are Multiplying Eq. (1) by u and Eq.(4) by T and averaging
symmetric with respect to the midplane of the fluid layer. Forthe result over the fluid layer we obtain the relationships
the case, discussed below, the boundary conditions are asym- )

metric. This leads to asymmetric layer structure of the opti- (1/2P)d(u-u)/dt=(wT)—(|Vu[?), (5)
mum fields as well as to different values for the upper bound
on the convective heat transport, wave number, and the  (1/2d(T?)/dt=R(wT)—(|VT|®)—(wTd0®/3z). (6)
thicknesses of the boundary layers of the optimum fields.

Consider a horizontally infinite fluid layer heated from We are interested in turbulent convection long after any ex-
below of thicknessd with fixed temperature¥; and T, at  ternal parameter has been changed. We define this situation
the upper and lower boundaries. Let us denote the coefficiefty the condition that all horizontally averaged quantities are
of thermal expansion by, the kinematic viscosity by, and  time independent. In this case We_obtain from the first inte-
the acceleration of gravity by. Denoting the thermal diffu- gral of the horizontal average8): d®/dz=wT—(wT). Us-
sivity of the fluid asx and usingd as length scalej®/«x as  ing this we obtain the final form of the relationshif&,(6)
time scale, and {,—T;)/R as temperature scale we can (known also as power integrals
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(WT)=(|Vu|?), (7) =a(1/2— z) for the upper intermediate layer. For the bound-
ary layers we introduce the coordinates=(a/6))(z+1/2)
<|VT|2>=R<WT>+<WT>2—<W—TZ>. (8) for the lower boundary layefnear the rigid boundajyand

.= (al 8,)(1/12—z) for the upper boundary layénear the
Equations(7),(8) hold for all Prandtl number. The impo-  stress-free boundarys, and & are connected to the thick-
sition of the infinite Prandtl number condition allows a fur- ness of the correspondent boundary layer and have the prop-
ther restriction of the fields that satisfy the power integrals€rty 6,,—0 whenR— .
Equation(1) becomes linear in the limP—c and we shall In the internal layer the assumption vf~1 and w;
incorporate it as an additional constraint into the variationak const, #,~ const which lead to vanishing of the terms con-
problem. The pressure is eliminated by taking thetaining derivatives. Thus we obtain the solutiom;
z-component of the double curl of E¢l). Thus we obtain =, /4:0,=9,e; W,=0,=1. For the intermediate layers

V2T+V4W 0. we write w; and 6; as w;=w; (&) a; 6;=abi(&,); W
We take also the equation of continuity as a constraint_ - ! A 1o s ! feuh T
Introducing the operatorL, u

la; 0,=ab (&).
into the variational problem by means of the general repre—_ 12(5') 1 1
sentation of a solenoidal vector fieldin terms of a poloidal (d /dgl uw~1) we obtain the resulting Euler-Lagrange
and a toroidal component= VX (VXke)+V Xk where equations for the upper and lower intermediate layers

the cond|t|0n¢> =0 can be imposed without changing ot
T_algng 'ghg qurl of Eq(1) we see thaiy must vanish in the ﬁ'—ﬁuaﬁ |—|2,u[(1—W191)W1]+(1—W191)|—|2,uW1=0-
limit of infinite Prandtl number. The component ofu of
interest to us is given by the poloidal fielg, w= —Vid) (12
whereV = g%/ 9x?+ 9%/ ay>. I

We write a functional for the convective heat transport |-|2,uW1: 0. (13
Nu—1=(wT)/R whereNu is the Nusselt number. Using the
power integrald7) and(8) and imposing the normalization The solution of Eq(12) is approximatelyw,6;=1. The
condition(w#)=1 we obtain the variational problem in the approxmate solution of Eq(13 when &—0 is w,

following form. =¢2\In (1/&). When 0 the correspondent solution is
Given Rayleigh numbeR find the maximunt(R) of the  ~ 5, (1) bu P
o : wy=cé,—[£3(6c)]In(1/£,) with c=0.834210.

variational functional :

We shall match the above solutions to the solutions for
the boundary layers. For the upper and for the lower bound-
ary layers we perform the scalingv1=Au\7v1(nu); 0,
among all fieldsw and ¢ subject to the constrainteve) = (1/A,) 61(7,); Wi=AW;(7); 6;=(1IA)80,(7). Under
=1 and V4W+V§0=O and the boundary condition  the assumption that in the boundary layers the terms contain-
=owldz=60=0 at z=—1/2 andw=9?w/9z2=#=0 atz ing the higher derivatives are much larger than the other
=1/2. The Euler-Lagrange equations for the functiof®l terms we obtain for the Euler-Lagrange equations in the

FRW,0)=[1—(LRN(|VOHI((1-wO)?) (9

are boundary layers
L gog v 1w0= 2] 1 war w0 (A5 st =B
RF F ’
- S b
W1 1 W1
V4w+V20=0, (11 A§,|RF53,| d77u| d77u|
wherel is — 1<\ =—(1/2)[2— (1/R)(|6|2)]< — 1/2. 1 )d“\?vl_o 5
We assume that five sublayers of the fluid layer exist. At t dong, s

high Rayleigh numbers almost the whole layer volume is

occupied by an internal layer in which the optimum fields The boundary conditions for the upper boundary layer are
and 6 are almost constants amdb is also constant approxi- W,(0)=W "(0)= 9,(0)=0 and the boundary conditions for
mately equal to 1. On the borders of this internal layer we
have two intermediate layers in whiche is again almost
Eonsté:mt alnd qual tol 1 bvgta}[nda chan%e iu:)hstant:ally '3‘ the solution for the upper boundary layer. Using thkat

oundary layer develops between each of the intermediate = o,m, and assuming,=c 5,/ a we obtain the approximate
layers and the boundary of the fluid layer. In this layer the
fieldsw and ¢ satisfy the boundary conditions and match theSelution for the upper boundary layen, ~ 7, + - - -. Analo-
correspondent values on the border between the boundafpus the solution for the lower mtermedlate layer must
and the intermediate layer. atch the solution in the lower boundary layer. Using that

H 1/2 H
For each sublayer we introduce the correspondent coordél = 671 and assumingh, = (1/a) 571In(1/5)]*? we obtain

nates. For the internal layer the coordinate remaif®r the  the approxmate solution for the lower boundary Iayelr
two intermediate sublayers we introduce the coordingtes =~ 77,2+

=a(z+1/2) for the lower intermediate layer and, ForF, «, 6,, 6, we have the equations

the lower boundary layer ang,(0)= wl(O) #,(0)=0.
The solution for the upper intermediate layer must match
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FIG. 1. Wave number as function of the Rayleigh number.
Solid line: case of fluid layer with two rigid boundaries. Dashed ~ FIG. 2. Boundary-layer thicknesses of the optimum fields as
line: case of fluid layer with two stress-free boundaries. Dot-dashedunction of the Rayleigh number. Solid line: case of the fluid layer
line: case of fluid layer with rigid lower boundary and stress-freeWith two rigid boundaries. Dashed line: case of fluid layer with two

upper boundary.

a*=c?5(RF, a*=RF&iIn(1/8), (16)
IFlda=0, 17
F=[2a(1—a*/R)]/[6,Dy+ 6D,], (18

where
® do®)? .
Duzzf do| | == +(1—7,6{)?|=2.11975,
0 dn,
(19
= [[doP)? .
D|=2J do| | == +(1—720)2| =2.2212.
0 dn
(20)

An application of Eq.(17) to Eq. (18) leads us to the
relationship

5,=6,(D,/D)[R—13a*]/[12a*]. (21
The solution ford, is
1307\ "% 1| 18
_ A* -1 - —1/20 —1/5
5,=A*(R) 244) (20> R™Y29InR)~ 15,
(22)

where A;=24'cY4(12D,D});  A,=(13D]/24%) 390
(1/20)3/20R71/40(|nR) 3/20; and A* (R) ~ [A]_/(A1+ AZ)]UZO.
The result fora is

a=[A*(R)]%(RI13) ¥ 23

and the result foF is

6/5
F= ( D_) [A* ( R)]2613_ 13/1(20— 1/5R3/10( InR) 1/5. (24)
|

Figures 1-3 show the dependendgR), a(R), 5y(R),

stress-free boundaries. Dot-dashed line: upper boundary layer for
the case of a fluid layer with rigid lower boundary and stress-free
upper boundary. Short-dashed line: lower boundary layer for the
case of fluid layer with rigid lower and stress-free upper boundary.

for the cases of fluid layer with two stress-free or two rigid
boundaries. As it can be expected the upper bound on the
convective heat transport for the case discussed here lies be-
tween the bounds on the convective heat transport for the
cases of layer with two rigid boundaries and of layer with
two stress-free boundaries. The wave numbes close to

the wave number for the case of two rigid boundaries. The
contribution of the upper boundary and intermediate layers is
expressed by the teriA* (R). The asymmetry of the opti-
mum fields leads to different dependencies of the thickness
of the upper and lower boundary layer on the Rayleigh num-
ber. Instead of one equation for the boundary layer thickness
6 for the case of a fluid layer with two rigid or two stress-
free boundaries, here we have two equations for the bound-
ary layer thicknesseg,, , 6, .

4
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FIG. 3. Upper bound on the convective heat transport as func-

tion of the Rayleigh number. Solid line: case of fluid layer with two

rigid boundaries. Dashed line: case of fluid layer with two stress-

free boundaries. Dot-dashed line: case of fluid layer with rigid

81(R) in comparison to the correspondent functions obtainedower boundary and stress-free upper boundary.
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We note that the theory of the-1la solution of the varia-
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variational problem. It is well known that the-1« solution

tional problem contains as a particular case the problem foof the variational problem leads to rigorous upper bound on

the onset of the convection. Analogous to Ré&b] the func-
tional, obtained by the power integra(g), (8) can be re-

the convective heat transport up to certain value of the Ray-
leigh number. If the Rayleigh number increases further the

duced to the variational functional that determines the ons&jgorous upper bound is obtained on the basis of thea?

of the convection(for details see Ref[16]) and thus we

solution, then by the 3 « solution, etc. As the upper bound

obtain for the critical values of the wave-number and Ray-optained by the * « solution for the case, discussed here, is

leigh number:a,=2.682,R,=1100.65.

The asymptotic theory of the-1« solution of the varia-
tional problem outlines the routes which must be followed
when a theory of the muli solutions is developed. The
boundary layers are important part of the theory of the multi
wave-numbers solutions. The increasing of the number of th
boundary layers which must be taken into account leads t8
complications in the multee case. The equations we shall
have to solve will be more complicated than these for th

case of a fluid layer with two rigid boundari¢43]. The

between the bounds for the cases of fluid layer with two rigid
and two stress-free boundaries, we can expect, that the bound
obtained by theN—« solution of the variational problem
(N—) will be «RY3. Indications for such a result can also

lé:e seen from the inequality obtained in Réf7]. The theory
f the multi«w solutions of the variational problem which
will answer the questions about the regions of the validity of

dhe bounds obtained by each of the multsolutions of the

variational problem, about the value of the bound obtained

investigation reported here indicates that despite the complivhen the numbef of the wave nur_nbers tends to infinity, and
cations because of the asymmetry of the optimum fields w@bout the relations among the thicknesses of the upper and
could obtain asymptotic analytical upper bounds on the conlower boundary layers of the optimum fields, will be a sub-

vective heat transport based on the multsolutions of the

ject of future research.
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